
Framework and Complexity Results for

Coordinating Non-Cooperative Planning Agents

J. Renze Steenhuisen1, Cees Witteveen1, Adriaan W. ter Mors1,2, and
Jeroen M. Valk2

1 Faculty of Electrical Engineering, Mathematics and Computer Science, Delft
University of Technology, P.O. Box 5031, 2600 GA Delft, The Netherlands,

tel. +31 15 278 7486, fax +31 15 278 6632,
{J.R.Steenhuisen,C.Witteveen, A.W.terMors}@tudelft.nl

2 Almende, Westerstraat 50, 3016 DJ Rotterdam, The Netherlands,
tel. +31 10 404 9444, fax +31 10 404 7773, {Adriaan,Jeroen}@almende.nl

Abstract. In multi-agent planning problems agents are requested to
jointly solve a complex task consisting of a set of interrelated tasks. Since
none of the agents is capable to solve the whole task on its own, usually
each of them is assigned to a subset of tasks. If agents are dependent upon
each other via interrelated tasks they are assigned to, moderately-coupled
teams of agents are called for. Such teams solve the task by coordinating
during or after planning and revising their plans if necessary. In this
paper we show that such complex tasks also can be solved by loosely-
coupled teams of agents that are able to plan independently, although
the computational complexity of the coordination problems involved is
high. We also investigate some of the factors influencing this complexity.

Key words: Multi-agent system, complex tasks, task assignment, planning,
coordination, computational complexity.

1 Introduction

A multi-agent planning problem requires a set of autonomous planning agents
to come up with a joint plan for achieving a set of tasks. Usually, none of the
participating agents is capable of solving all tasks by itself. Therefore, each agent
is assigned a subset of tasks to carry out and each agent has to construct a plan to
carry out the tasks assigned to it. Obviously, it is required that these individual
plans are compatible with each other in the sense that together they should
constitute a feasible plan for the complete set of tasks. Therefore, we need some
form of coordination between the agents.

Like in [1, 2], we classify multi-agent planning problems according to the type
of coordination needed. This classification is based on a schematic partitioning of
multi-agent planning problems into three phases: A task-allocation phase where
it is decided who does what, a planning phase where it is decided how to do it,
and a task-execution phase where it is done.

Problems where coordination is only needed in the task-allocation phase are
problems that can be solved by loosely-coordinated agents that are able to plan
and act autonomously, but need to coordinate with respect to the task allocation
(e.g., negotiating about the subtasks to be assigned). Typical tasks that can be
solved in this way are reconnaissance tasks and simple pick-up and delivery tasks.
If coordination is also needed in the planning phase, such problems are said to
be solvable by moderately-coordinated agents. Such agents need to coordinate
in the pre-execution phase, but are not dependent upon each other if the plan
is executed. Typical problems in this category are monitoring and multi-modal
transportation tasks. Finally, problems where coordination between agents is
needed in all three phases are problems that can be solved by tightly-coordinated
agents. These agents need coordination not only in the preparation but also in
the execution phase. Examples are platooning vehicles and moving in formation.

Most approaches to coordination in multi-agent planning, like [3–5], stress
the intertwining of planning and coordination processes allowing the agents to
revise their plans by exchanging information during the planning process. Other
approaches, like [6–8], consider coordination as an after-planning process to ei-
ther remove conflicts between independently developed plans or to improve such
plans by exploiting positive interactions between them.

In both these approaches it is assumed that due to coordination requests
–either during or after planning– individual agents are prepared to adapt and
revise their current (partial) plans in order to obtain a feasible joint plan.

In this paper, we concentrate on solving multi-agent planning problems where
agents are self-interested and non-cooperative. Typical problems we are inter-
ested in are solving complex tasks that require the joint effort of a set of agents,
but where interaction between the agents during planning and execution is ab-
sent. Examples of such problems are multi-modal transportation problems that
have to be solved by the joint effort of competitive transportation organizations
and patient planning in hospitals where self-interested and independent parties
are involved in scheduling health-care resources. In all these applications, we
have to assume that (i) the agents do not want to be interfered during planning
and (ii) agents do not want to revise their plans afterwards. We will call the
problem of ensuring that a feasible joint plan will be created, while taking into
account (i) and (ii), the plan-coordination problem. Clearly, both approaches
mentioned above are not suitable to solve this plan-coordination problem.

At first sight seems that the plan-coordination problem can only be used to
solve task planning problems that require loosely-coordinated agents, since in
that case the planning can be achieved by the agents independently. In such
cases, it is often sufficient to deal with coordination in the task-assignment (and
task decomposition) process, such that the plan-coordination problem is solved
in a trivial way.

In this paper, however, we will show that the plan-coordination problem can
also be used to solve tasks that require moderately-coordinated agents. We will
develop a general framework for representing and solving the task assignment
and plan-coordination problem. The main idea we apply here is that a set of

tasks requiring moderately-coupled agents to solve them can be reduced to a set
of tasks requiring loosely-coupled agents. This reduction ensures that the set of
independently developed plans constructed for the latter set is also a solution
for the former set of tasks. We will use this framework to describe this reduction
and to establish some relations between properties of tasks, properties of agents,
and the complexity of the resulting plan-coordination problems.

Significance and Perspectives The approach we propose can be viewed upon
from different perspectives. First, it is an attempt to partially integrate the
research areas of task assignment, coalition formation, and multi-agent planning.
In particular, we will show that in solving moderately-coupled tasks, one has to
recognize the interaction effects between individual planning methods of agents
and the task-assignment methods employed, since the outcome of one agent is
not only determined by the set of tasks it receives but also by the plans developed
by other agents. We will show that such interaction effects have consequences
for the computational complexity of the plan-coordination problem.

Second, our approach can be viewed as an attempt to connect other research
on coordinating agents like social laws [9, 10] and cooperation protocols [11] with
multi-agent task-based planning research. Social laws are general rules that gov-
ern agent behavior. If a set of agents abide by these rules, then their behavior
will be coordinated without the need for any problem-specific information ex-
change between the agents. In many situations, however, coordination cannot be
achieved (or not efficiently) through general, problem-independent rules alone.
In such cases, cooperation protocols can be applied that require simple forms
of problem-specific information exchange before the agents can start planning.
These protocols guarantee that if the agents adhere to the protocol, then the
individual plans can easily be assembled into a feasible joint plan for the overall
task. Our approach to solve plan-coordination problems for moderately-coupled
agents comes down to reducing these problems to plan-coordination problems
for loosely-coupled agents that agree upon cooperation protocols.

Finally, our approach can be viewed upon from a broader computational per-
spective. Note that tasks requiring loosely-coupled coordination allow the agents
to plan independently. Hence, they allow the multi-agent planning problem to
be partitioned into independent planning subproblems. For moderately-coupled
plan-coordination problems, such a partitioning is not possible. As we will show,
solving moderately-coupled plan-coordination problems for self-interested agents
comes down to transforming moderately-coupled plan-coordination problems
into loosely-coupled plan-coordination problems in such a way that the origi-
nal problem is changed in a minimal way. In other words, our approach is an
example of applying a minimal change and a task decomposition approach to
solve a plan-coordination problem.

2 Framework

The formal framework we present is intended to capture the basic aspects of
task-based planning and coordination of non-cooperative agents. It enables us

to distinguish the main components of the plan-coordination problem –and their
interactions– that we are interested in:

1. a complex task that requires the joint effort of several agents to complete it,

2. a task-assignment process by means of which each agent obtains a subset of
tasks to complete,

3. a planning process enabling each agent to complete its subset of tasks, and

4. a plan-coordination mechanism by means of which the completion (if possi-
ble) of the original complex task can be ensured.

Complex Task We consider a set of agents A = {A1, . . . ,An} that have to
complete a complex task T . Such a complex task is defined as a set of tasks
T = {t1, . . . , tk} together with two binary relations between them. One of these
relations is the decomposition relation ρ, relating an abstract task t to a set of
more primitive subtasks.3 Therefore, we define an OR-decomposition relation ρ∨

to model this type of relation between an abstract task t and its (more primi-
tive) subtasks ti. On the other hand, running a factory requires multiple tasks to
be done, such as the purchasing of goods and hiring of personnel, and optimiz-
ing production lines. To model this relation, we define an AND-decomposition
relation ρ∧ between an abstract task t and a set of subtasks ti.

4

The second relation is a precedence relation ≺ among tasks, where t ≺ t′

means that t has to be completed before t′ can start. The set of precedence
constraints induces a partial order on the tasks in T .

In addition, an agent can only complete a task when it is capable of carrying
it out at all. Therefore, capabilities need to be associated with both tasks and
agents. These capabilities are incorporated by defining capability vectors for both
the agents c(Ai) and the tasks c(tj). We postpone their detailed description to
a separate paragraph about Task Assignment below.

We now formally define a complex task as T = (T, ρ,≺, c(T)) thereby ex-
tending the concept of a task tree [12, 13]. In this tuple, T represents the set of
abstract and primitive tasks, ρ is the decomposition relation, ≺ a precedence
order, and c(T) is the abbreviation for the set of task capability vectors.

In Figure 1, an example is shown of a complex task and its decomposition
into subtasks with precedence relations.

In a complex task T = (T, ρ,≺, c(T)), we require that the decomposition
ρ(t) of a task t is unique and that it is either completely in ρ∨, or completely
in ρ∧ (i.e., ρ∨ ∩ ρ∧ = ∅). Note that this does not limit the expressiveness of our
framework with respect to tasks that can be decomposed by a combination of
OR and AND decomposition (e.g., in Figure 1, we have ρ(t1) = {t11, t12} ⊆ ρ∨
with ρ(t11) = {t111, t112} ⊆ ρ∧).

3 For instance, when goods need to be transported from a harbor to a factory we have
an abstract task transport. Such an abstract task could be completed by carrying
out one of the more primitive subtasks transport by train, transport by truck, and
transport by ship.

4 In [12], a similar decomposition of complex tasks is used.

t 112t 111

t 11 t 12

t 1
t 2

t 21
t 22 t 23

t

Fig. 1. An example complex task decomposed (dashed arcs) into subtasks with prece-
dence relations (normal arcs) between them.

Moreover, the decomposition and precedence relation are related in two ways.
First, the relations are orthogonal, which means that precedence relations only
exist between tasks that have no decomposition relation between them (i.e., ρ+∩
(≺ ∪ ≺c)+ = ∅).5 Second, precedence relations are inherited via decomposition
(i.e., if t1 ≺ t2, then for all t′1 ∈ ρ(t1) and for all t′2 ∈ ρ(t2) we have that t′1 ≺+ t2,
t1 ≺+ t′2, and t′1 ≺+ t′2).

Having defined the hierarchical decomposition of a set of tasks, we now define
a task network (T, ρ) with ρ = ρ∨ ∪ ρ∧, to be able to express when a task and
a set of tasks has been completed. We say that a task t ∈ T in a task network
(T, ρ) is completed if exactly one of the following conditions holds:

1. t has been completed directly,
2. a task t′ ∈ ρ(t) ⊆ ρ∨ has been completed, or
3. all tasks t′ ∈ ρ(t) ⊆ ρ∧ have been completed.

This notion naturally extends to the completion of a task network. A task
network (T, ρ) is said to be completed if all initial tasks in (T, ρ) have been
completed, that is if all tasks in the set {t | ρc(t) = ∅} have been completed.
Note that this framework differs from others in the sense that it does not restrict
completion to completing the set of leaf tasks {t | ρ(t) = ∅}.

Task Assignment Now that we have defined when a task network (T, ρ) associ-
ated with a complex task T is completed, we can deal with the problem of which
agent is going to complete which task.

First, an individual agent Ai must have the required capabilities to be able to
carry out a certain task t ∈ T . We assume that in the entire multi-agent system,
m distinct capabilities c1, . . . , cm can be distinguished. The capabilities of agent
Ai are represented by the vector c(Ai) = (c1(Ai), . . . , cm(Ai)) ∈ (N ∪ {∞})m,
where cj(Ai) specifies how much agent Ai can offer of capability cj (we will

5 The following notations are used on a binary relation σ: transitive closure σ
+, tran-

sitive reduction σ
−, and the converse σ

c.

assume integral quantities). Similarly, c(tj) = (c1(tj), . . . , cm(tj)) ∈ N
m is the

vector that specifies how much of each capability is required for carrying out
task tj ∈ T . An agent Ai is said to be able to carry out a subset of tasks Ti ⊆ T

iff c(Ai) ≥
∑

t∈Ti
c(t) (where x ≥ y iff for all i = 1, . . . ,m, xi ≥ yi).

6 In the
following, the set of agent capability vectors and the set of task capability vectors
are abbreviated by c(A) and c(T), respectively.

A task instance where the agents are not already assigned to tasks is called
a free task instance and is specified as a tuple (T, ρ,≺,A, c(A), c(T)). Such an
instance specifies the tasks, their decomposition relation, their order dependen-
cies, the task requirements, and the agent capabilities. To complete the task
network (T, ρ) associated with the free task instance, individual tasks t ∈ T

have to be assigned to agents. Therefore, we need to define which sets of tasks
can be assigned to agents in order to complete (T, ρ). Such a set T ′ ⊆ T is called
a candidate-assignment set and has to satisfy the following constraints:

1. T ′ is a ρ+-independent subset of T : if t, t′ ∈ T ′ then neither tρ+t′ nor t′ρ+t,
2. for all t ∈ T , if t′ ∈ ρ(t) and ρ(t) ⊆ ρ∨ then ρ(t) ∩ T ′ = {t′}, and
3. (T, ρ) is completed by completing all tasks in T ′.

In Figure 1, the set T ′ = {t111, t112, t2} is a candidate-assignment set. Note
that a candidate-assignment set does not have strict supersets nor strict subsets
that are candidate-assignment sets. Moreover, if ρ = ∅, there is only one unique
candidate-assignment set (i.e., T ′ = T).

A partitioning {Ti}
n
i=1 of a candidate-assignment set T ′ with every t ∈ T ′

assigned to an agent Ai capable of carrying it out is called an assignment set if

1. the set
⋃n

i=1
Ti is a candidate-assignment set, and

2. every agent Ai is capable of completing all tasks in its assigned partition Ti.

Applying an assignment set to a free task instance (T, ρ,≺,A, c(A), c(T))
results in a fixed task instance ({Ti}

n
i=1,≺,A, c(A), c(T)). The agents Ai are

characterized by the blocks of the partitioning {Ti}
n
i=1 which are assumed, with-

out loss of generality, to be non-empty. Additionally, the decomposition relation
and the capabilities are no longer needed, because each agent is able to complete
the tasks assigned to it which are ρ-independent. Therefore, fixed task instances
will be abbreviate by the tuple ({Ti}

n
i=1,≺) in the remainder of this text.

Planning As the result of task assignment, the set of precedence constraints ≺
in a fixed task instance ({Ti}

n
i=1,≺) is split into two disjoint subsets:7

1. the set of intra-agent constraints ≺intra=
⋃n

i=1
≺i=

⋃n

i=1
(≺+ ∩(Ti × Ti))

−,
contains all precedence constraints between tasks assigned to agent Ai, and

6 If cj(Ai) is finite, the capability is said to be a consumable resource (e.g., fuel, time,
or money). If cj(Ai) = ∞, it is a non-consumable capability (e.g., knowledge or a
skill).

7 We would like to present these relations as concisely as possible. Therefore, we will
use a transitive reduction of a transitively closed relation whenever it is possible.

2. the set of inter-agent constraints ≺inter= (≺+ ∩
⋃

i6=j(Ti × Tj))
−, contains

all precedence constraints between tasks assigned to different agents.

Note that each agent Ai has to complete its part (Ti,≺i) of the complex task,
which is generated by the set of tasks Ti assigned to it. In order to complete
(Ti,≺i), each agent has to construct a plan (or schedule) for it. Such a plan can
be represented as a partial ordering of the tasks Ti that satisfies the precedence
constraints ≺i. Irrespective of the (possibly domain-specific) planning tools em-
ployed by Ai, we will therefore assume that the resulting plan always can be
represented by a partial order Pi = (Ti, πi) with ≺i⊆ πi.

From an individual agent’s point of view, it wants to be completely au-
tonomous in developing its plan Pi and unwilling to revise it afterwards. There-
fore, we define a joint plan for a set of agents Ai on a fixed task instance
({Ti}

n
i=1,≺) as a plan P = ({Ti}

n
i=1, π) where

1. π respects ≺, that is ≺ ⊆ π, and

2. each individual plan Pi = (Ti, πi) of agent Ai is respected, that is, πi ⊆
(π ∩ (Ti × Ti)).

Clearly, if such a joint plan exists, it implies that the current plans of all the
agents are coordinated. There is no need for any revision of the individual plans
in executing the joint plan.

Plan Coordination The existence of such a joint plan is by no means guaran-
teed: Due to the set of inter-agent precedence constraints, combinations of the
individual plans together with this set can lead to breaking of the partial order
as is shown in the following simple example.

Example 1. In Figure 2, a simple situation is depicted with four agents A1, A2,
A3, A4 being assigned two tasks each of two complex tasks. It is clear that
multiple combinations of individual plans of agents lead to inter-agent cycles.
For example, if A1 chooses a plan where t8 ≺ t1 and A3 chooses a plan where
t3 ≺ t6, there exists such a cycle. Hence, the possibility of such plans prevents
the existence of a joint plan respecting every individual plan.

t 1

t 8

t 2

t 7

t 3

t 6

t 4

t 5

Fig. 2. Problems can occur when planning autonomously.

The plan-coordination problem now can be stated as follows: How can we
guarantee that every possible set of individual plans Pi can be easily combined
into a feasible joint plan, without the need to revise the individual plans? In
fact, this means that we want to have a solution to a moderately-coupled plan-
coordination problem –there are constraints between the tasks assigned to dif-
ferent agents– without needing the agents to coordinate during planning.

A given fixed task instance ({Ti}
n
i=1,≺) is said to be coordinated, if it holds

that for every set of individual plans {Pi = (Ti, πi)}
n
i=1 constructed by the agents

there exists a joint plan respecting the individual plans Pi. In [14], it was shown
that every fixed task instance can be transformed into a coordinated one by
adding a minimum number of intra-agent constraints ∆ =

⋃n

i=1
∆i such that

the resulting instance ({Ti}
n
i=1,≺ ∪ ∆), is a coordinated instance.

In Figure 2, the reader might check that ∆ = {t7 ≺ t2, t6 ≺ t3, t5 ≺ t4}
is such a set of additional constraints that turns the fixed task instance into a
coordinated one. The problem, of course, is to determine how difficult it is to
find such a set of additional constraints.

3 The Computational Complexity of Coordination

In this section, we will analyze the computational complexity of plan coordina-
tion. We study three variants of the plan-coordination problem and some factors
that influence their complexity. Some results have been published in [14]; the
results about the complexity of coordination when the number of agents is kept
fixed are new.

3.1 Variant I: Pure Coordination

We start with analyzing the complexity of coordination in multi-agent plan-
ning isolated from the task-assignment process and define the following decision
problem for fixed task instances:

Pure Coordination Recognition (PCR)
INSTANCE: Given a fixed task instance ({Ti}

n
i=1,≺).

QUESTION: Is this instance coordinated?

We have shown that PCR is coNP-complete [15], by a non-trivial reduction
from the complement of the Path With Forbidden Pairs (PWFP) problem.

While PCR only asks whether a fixed task instance is coordinated, it does
ask for the existence of a bounded coordination set as in the following problem:

Pure Coordination (PC)
INSTANCE: Given a fixed task instance ({Ti}

n
i=1,≺) and integer K ≥ 0.

QUESTION: Does there exist a coordination set ∆ with |∆| ≤ K such
that the fixed task instance ({Ti}

n
i=1,≺ ∪ ∆) is coordinated?

Intuitively, guessing a coordination set ∆, we can verify in polynomial time
using a PCR-oracle whether the instance ({Ti}

n
i=1,≺ ∪ ∆) is coordinated. Since

PCR is coNP-complete, it follows that PC ∈ Σp
2. It turns out that PC is

Σp
2-complete, using a reduction from a quantified version of PWFP [15].

Factors Influencing the Complexity of Pure Coordination It seems rea-
sonable to assume that one source of complexity of the plan-coordination prob-
lem can be attributed to the number of tasks each agent receives and –indirectly–
to the complexity of the single-agent planning problems for these tasks. However,
it turns out that the PC problems remain intractable even if the single-agent
planning problems are trivial (see Table 1). Notice that the Σp

2-completeness of
PC is still open for instances where each agent has at most 4, 5, or 6 tasks.

|Ti| = 2 |Ti| ≤ 3 |Ti| ≤ 4 |Ti| ≤ 7

PCR P P coNP-complete coNP-complete

PC NP-complete NP-complete Σp

2 Σp

2-complete

Table 1. Complexity of PCR and PC with limited number of tasks per agent.

Due to limited space, we will merely give hints on how these results are
obtained. All proofs of these and other complexity results can be found in [16].
First, for PC with |Ti| = 2 a reduction can be made from Feedback Vertex

Set. For PCR with |Ti| ≤ 3, a reduction can be made to topological sorting.
The completeness of PCR with |Ti| ≤ 4, and PC with |Ti| ≤ 7, is derived from
the properties of the reductions used in the completeness proofs of the general
variants.

Another source of complexity might be the number of agents involved. Indeed,
if we limit the number of agents, it can be shown that the PCR problem is in
P for any fixed number of agents. This can be proven by reducing the problem
to simple inter-agent cycle-testing. Detecting such a cycle can be achieved in
polynomial time [16]. As an easy consequence, the associated PC-problems are
in NP. They turn out to be NP-complete for all fixed values |A| = n ≥ 3, which
can be proven by reduction from 3-Partite Vertex Cover [16]. Although we
suspect PC for n = 2 to be tractable, the complexity of this problem is still
open.

|A| = 2 3 ≤ |A|

PCR P P

PC NP NP-complete

Table 2. Complexity of PCR and PC with fixed number of agents.

3.2 Variant II: Coordinated Assignment

If a task-assignment problem is part of the coordination problem, we define

Coordinated Assignment Recognition (CAR)
INSTANCE: Given a free task instance (T, ρ,≺,A, c(A), c(T)).
QUESTION: Does there exist an assignment set {Ti}

n
i=1 such that the

resulting fixed task instance ({Ti}
n
i=1,≺) is coordinated?

The CAR problem turns out to be Σp
2-complete [14]. Note that here task-

assignment problems seem to constitute an independent factor of complexity as
the total complexity goes up one step in the polynomial hierarchy compared to
PCR. Note that checking a candidate-assignment set for a free task-instance is
polynomially verifiable, both for the case where agents have consumable capabil-
ities as well as the case where agents have non-consumable capabilities. However,
the problem of deciding whether there exists a suitable task assignment for a free
task instance is NP-hard for consumable capabilities8 but polynomially solvable
for non-consumable capabilities. Therefore, one might expect that the consum-
ability of capabilities would influence the complexity of CAR. This turns out
not to be the case: The CAR problem turns out to be Σp

2-complete for both
assignment conditions.

Since adding the task-assignment problem resulted in moving one step up in
the polynomial hierarchy for the coordination recognition problem, one would
expect the same for the coordination problems themselves. However, this is not
the case for the following problem, where the task-assignment problem is added
to the pure coordination problem.

Coordinated Assignment (CA)
INSTANCE: Given a free task instance (T, ρ,≺,A, c(A), c(T)) and a K.
QUESTION: Does there exist an assignment set {Ti}

n
i=1 and a coordi-

nation set ∆ ⊆
⋃n

i=1
(Ti ×Ti) with |∆| ≤ K such that the resulting fixed

task instance ({Ti}
n
i=1,≺ ∪ ∆) is coordinated?

Note that it suffices to guess both an assignment and a coordination set ∆
to verify in polynomial time using a PCR-oracle that the given instance is a
yes-instance. Therefore, the problem cannot be harder than the PC problem.
In fact, it turns out that the CA is Σp

2-complete. Hence, maybe contrary to
expectation, adding a task-assignment problem does not increase the complexity
of the coordination problem in an essential way.

3.3 Variant III: Complete Coordination

Obviously, the next step is to extend the notion of being coordinated from having
some coordinated assignment to having all task assignments being coordinated.
The associated coordination recognition problem can be stated as follows:

Complete Coordination Recognition (CCR)
INSTANCE: Given a free task instance (T, ρ,≺,A, c(A), c(T)).
QUESTION: Is it true that for all assignment sets {Ti}

n
i=1 the resulting

fixed task instance ({Ti}
n
i=1,≺) is coordinated?

It turns out that CCR is Πp
2-complete [14].

Again we are interested in checking whether a bounded coordination set
exists for this problem. This problem can be seen as guaranteeing that every

8 This can be shown by reduction from Partition.

possible assignment of tasks to agents results in a coordinated fixed task instance
by adding a limited number of additional constraints. We now define the most
general variant of the coordination problem as

Complete Coordination (CC)
INSTANCE: Given a free task instance (T, ρ,≺,A, c(A), c(T)) and a K.
QUESTION: Is it true that for all assignment sets {Ti}

n
i=1 there exists a

coordination set ∆ ⊆
⋃n

i=1
(Ti×Ti) with |∆| ≤ K such that the resulting

fixed task instance ({Ti}
n
i=1,≺ ∪ ∆) is coordinated?

By guessing an assignment and using a Σp
2-oracle for the resulting PC prob-

lem, we can verify a counter-example in polynomial time. Hardness for this class
can be proven by reducing a quantified version of PWFP to it, which is Πp

3-
complete. It turns out that the CC-problem is Πp

3-complete.

Coordination Recognition Coordination

Pure Coordination coNP-complete Σp

2-complete

Coordinated Assignment Σp

2-complete Σp

2-complete

Complete Coordination Πp

2-complete Πp

3-complete

Table 3. Complexity of three variants of the coordination problem.

To sum up, in Table 3, the complexity results of the discussed three variants
of the coordination problem are given. It is clear that the general problems are
intractable. Therefore, we have to rely on approximation algorithms for find-
ing practical solutions to these problems. We refer the reader to [14] for some
practical applications using such approximation algorithms for coordination.

4 Concluding Remarks

We discussed a general framework capturing the basic aspects of task-based plan-
ning and coordination for non-cooperative agents. One of the advantages of this
framework is that it allows us to study several factors, such as task-assignment
procedures and capabilities of agents that might affect the complexity of the
plan-coordination problem. The general plan-coordination problems turned out
to be intractable. Studying the change in complexity when bounding the number
of tasks per agent or the number of agents, we showed that these subclasses are
much easier to solve, especially when the number of agents is kept constant.

These results are not only of theoretical interest, but also have some practical
implications. First, because we assumed self-interested non-cooperative agents,
the proposed solution to the plan-coordination problem allows the agents to plan
independently. This enables the (re)use of single-agent planners in a multi-agent
planning setting. After the addition of the constraints, the moderately-coupled
planning problem has been reduced to a loosely coupled one. It turns out that
in this way we can solve the multi-agent planning problem more efficiently by
decomposing it into smaller subproblems that can be solved independently.

Secondly, these results show that we can only hope for approximation al-
gorithms to solve these problems. In fact, in [14], such approximations have
successfully been applied to solve multi-modal logistic planning problems.

Finally, we note that one of the shortcomings of the current framework is
that it lacks the notion of time. Currently, we are extending our framework
to represent time intervals and time constraints on tasks to apply our plan-
coordination methods on. This will enable us to generalize similar decoupling
methods, like the temporal decoupling method [17], and to use them as part of
the coordination of temporal planners.

References

1. Dias, M.B., Zlot, R.M., Kalra, N., Stentz, A.: Market-based multirobot coordi-
nation: A survey and analysis. Technical Report CMU-RI-TR-05-13, Robotics
Institute, Carnegie Mellon University (2005).

2. Kalra, N., Stentz, A., Ferguson, D.: Hoplites: A market framework for complex
tight coordination in multi-agent teams. Technical Report CMU-RI-TR-04-41,
Robotics Institute, Carnegie Mellon University (2004).

3. Decker, K.S., Lesser, V.R.: Designing a family of coordination algorithms. In:
Proc. of DAI. (1994) 65–84.

4. Durfee, E.H., Lesser, V.R.: Partial global planning: A coordination framework
for distributed hypothesis formation. IEEE Transactions on Systems, Man, and
Cybernetics 21(5) (1991) 1167–1183.

5. Ephrati, E., Rosenschein, J.S.: Multi-agent planning as the process of merging
distributed sub-plans. In: Proc. of DAI. (1993) 115–129.

6. Cox, J.S., Durfee, E.H.: Discovering and exploiting synergy between hierarchical
planning agents. In: Proc. of AAMAS. (2003) 281–288.

7. Foulser, D.E., Li, M., Yang, Q.: Theory and algorithms for plan merging. Artificial
Intelligence Journal 57(2-3) (1992) 143–182.

8. von Martial, F.: Coordinating Plans of Autonomous Agents. Springer (1992).
9. Moses, Y., Tennenholtz, M.: Artificial social systems. Computers and AI 14(6)

(1995) 533–562.
10. Shoham, Y., Tennenholtz, M.: On social laws for artificial agent societies: Off-line

design. Artificial Intelligence 73(1–2) (1995) 231–252.
11. Jennings, N.R.: Commitments and conventions: The foundation of coordination in

multi-agent systems. The Knowledge Engineering Review 8(3) (1993) 223–250.
12. Zlot, R.M., Stentz, A.: Market-based multirobot coordination for complex tasks.

International Journal of Robotics Research, Special Issue on the 4th International
Conference on Field and Service Robotics 25(1) (2006) 73–101.

13. Zlot, R.M., Stentz, A.: Market-based multirobot coordination using task abstrac-
tion. In: Proc. of FSR. (2003).

14. Buzing, P., ter Mors, A.W., Valk, J.M., Witteveen, C.: Coordinating self-interested
planning agents. Autonomous Agents and Multi-Agent Systems 12(2) (2006).

15. Valk, J.M.: Coordination among Autonomous Planners. PhD thesis, Delft Univer-
sity of Technology (2005).

16. Steenhuisen, J.R., Witteveen, C.: Complexity studies in coordinating non-
cooperative planning agents. Technical report, Delft University of Technology
(2006) Forthcoming.

17. Hunsberger, L.: Group Decision Making and Temporal Reasoning. PhD thesis,
Harvard University (2002).

